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Abstract
In this work we analyze the effective model obtained in ref. [58] via Monte Carlo techniques.
In that reference, the authors consider an ensemble of closed line-like objects that obey
an action that has length, curvature and contact interaction terms. After a number of
controlled approximations and putting the model on a lattice, they translated averages
of this confinement order parameter into the ratio between the partition function of a
frustrated XY -model and its unfrustrated counterpart. Here, we shall numerically analyze
different possibilities for the frustration distribution: one localized at the links that pierce
the Wilson loop minimal area and one that relies on the solid angle picture, that explores
the multivaluedness of this quantity as one goes around the Wilson loop. In particular, we
perform averages near the critical temperature as the continuum limit is reproduced when
the system is near that point. Two results of ref. [58] were reproduced numerically: the
area law near the critical temperature and the expected dependence of the string tension
on the representation of the gauge group. It is also found that the N-ality 1 representations
obey the constant ratio σNA (1)/ sin2 π

N
≈ 2.038 10−4 for a 113 lattice and evidence that an

area law arises from the solid angle picture.

Keywords: XY -model, numerical simulation, confinement(physics).
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Introduction

One of the most important and still unsolved [43] problems in contemporary Physics

is to sistematically understand the inner workings of the con�nement of quarks and gluons

from Quantum Chromodynamics [60, 74], the proposed theory to model the internal

structure of hadrons. In the last decades, many theoretical e�orts have been made in this

sense, ranging from analytical [13,23,50] to numerical ones [9,20,36], hence building a

certain image of how these interactions might look like. One hopes that in the next few

years, experiments like the GlueX collaboration1 at the Je�erson Lab, give a nature's

veredict about them.

An illustrative way to introduce this theme is to consider how a massive static quark-

antiquark pair interact. When these sources are close to each other, the chromoelectric

�eld lines are squeezed, in such a way that the energy stored in this �eld grows linearly

with the interquark separation, thus generating the so-called�ux tube. This occurs in

contrast to the usual electromagnetism, in which the �eld would spread further into space.

This idea is indeed con�rmed by lattice QCD [15, 70], a formalism onto which

the properties of this theory are analyzed in a discretized spacetime with Monte Carlo

techniques. In this context it is possible to obtain information about the low energy sector

of QCD, which is until now prohibitively di�cult in the continuum. Further accounts on

the theme are discussed in Appendix A. In �g. 1 one may see a recent numerical result

from ref. [7].

Figure 1 � Chromoelectric �eld con�guration of a massive quark-antiquark pair as a
function of the longitudinal and transversal with respect to the line that
separates the two particles. The right plot can be obtained from the left one by
removing the Coulomb potential contribution. Taken from ref. [7].

1 http://www.gluex.org/GlueX/Home.html
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One hence sees that, by removing the Coulomb contribution to the potential, there

is a region along the line between the pair at which the chromoelectric �eld is constant,

which is equivalent to the squeezing of �eld lines. However, as the charges are further

separated, and the e�ect of dynamical quarks are considered (they were not in ref. [7]) it

becomes energetically favorable that these dynamical particles appear from vacuum to

screen the original pair,breaking the stringand yielding two colorless states.

One way to give a more physical picture to these structures is to consider an

ingenious analogy with the usual electromagnetism:dual superconductivity. This is based

on what would occur with a magnetic monopole-antimonopole pair if these are put in a

type II superconductor. These superconductors have the property that, with su�ciently

large magnetic �elds, it is possible to produce Abrikosov vortices [2]. These are �laments

where the magnetic �eld penetrates the material. Thus a �ux tube is formed, something

that does not happen in a type I superconductor due to the London currents that appear

in its surface [6].

Figure 2 � Pictorial representation of a Abrikosov vortex and the hypothetical monopole
con�nement in a type II superconductor. Taken from ref. [63].

Therefore, if monopoles existed, they were put in a type II superconductor, and had

the right magnetic charge, a magnetic monopole-antimonopole pair would produce a �ux

tube between them. Thus a linearly growing potential would be generated, hence con�ning

the pair. In this QCD vacuum picture, originally proposed by Nambu [56], the role of the

magnetic �eld is made by the chromoelectric �eld, thus characterizing theduality.

However, the linearly growing potential is not the whole story. By taking into

account the quantum �uctuations in this string-like structure, a Coulomb-like term arises.

According to the pioneering work of ref. [51], one gets to the fact that the e�ective potential

between the sources is

V(r ) = �r +

r

+ O
� 1

r 2

�

;  = �
�
24

(d � 2) (1)

where d is the spacetime dimension;� is the so-called string tension andr is the pair

separation. The term proportional to1=r is called the Lüscher term. This result is also
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con�rmed by lattice simulations [7,9].

Complementing the dual superconductor picture, the mechanism that engenders

the regular superconductivity is the condensation of pairs of highly correlated electric

charge pairs (electrons forming Cooper pairs), hence one is lead to think, taking duality

into account, that some chromomagnetic degrees of freedom condense.

Indeed, in the context of compact QED2 in (2 + 1) D con�nement is yielded

by monopoles [39, 61]. As QCD has a more complicated, non-abelian gauge symmetry,

one might be lead to postulate that analogous degrees of freedom contribute to quark

con�nement. Nevertheless, due to the rich structure brought by this non-abelianicity, it

would be reductionist to think that this analogy su�ces.

In this way, a con�nement picture involving what is calledcenter vortex is put

forward in the 70's. These con�gurations have an intricate de�nition, which depends on its

e�ect on the gauge-invariant observable known as the Wilson loop. The latter is de�ned

by

W =
1
N

tr P exp
�

ig
I

C
dx� A � (x)

�

; (2)

whereC is a closed path in four dimensions.

Brie�y, the Wilson loop is a con�nement order parameter, exhibiting thence di�erent

behaviors according to the phase of the theory. When taking averages in �eld con�gurations,

the behavior ofhW(C)i is [37]

hW(C)i �

8
><

>:

exp [� �A (S(C))]; in the con�ned phase

exp [� � P(C)]; in the decon�ned phase
(3)

whereA(S(C)) is the area of the minimal surface whose boundary isC and P(C) is the

perimeter of C. With this, one refers to the behavior of Wilson loop averages as having an

area law and perimeter law, respectively. This quantity will have a section to itself later.

Now, it will be de�ned what is meant by the center of a groupG. This is the set

of elements that comute with all other group members, namely,

Z := f z 2 G j zg = gz, 8g 2 Gg: (4)

In the case ofSU(N ), its center consists of theN -th roots of unity,

Z (N ) = ei 2�
N k1 k = 0; :::; N � 1: (5)

Accordingly, a con�guration A � , localized on a curvè is called acenter vortex if

the Wilson loop computed overC receives a contribution of a non-trivial center element
2 It consists of a discretized, but still gauge invariant, version of QED. The gauge invariance imposition

leads to a formalism where the �elds belong conventionally to the interval[� �; � ], whose compacity
names the formalism. In the con�ned phase, monopoles form a plasma, but, in the decon�ned one,
they form a dilute gas of magnetic monopoles [39,61].
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when C is linked by `, thus,

W(C; `) = zL (C;` ) with z 2 Z(N ) and (6)

L(W; `) =
1

4�

I

C

I

`
d~lC �

 

d~l ` ^
~xC � ~x`

j~xC � ~x` j3

!

; (7)

the latter being the topological invariant calledlinking number 3.

A possible way to motivate this de�nition is to follow the lines of ref. [13], where

the quantum phenomenon of gluon mass generation is discussed using anSU(N ) infrared-

e�ective gauge invariant massive lagrangian. Ind = 3 Euclidean spacetime dimensions an

explicit center-vortex soliton solution to the equations of motion is

A i (x; j ) = 2 �Q j � iab@a

I

`
dyb[� 0(x � y) � � m (x � y)]: (8)

Here, � m (x � y) is the massm free propagator and theQ matrices are in Cartan

subalgebra [14]. Assuming further that the typical lengths of bothC and ` are large

compaired to1=m, one obtains from (2) that the behavior of the Wilson loop is

W(C) = exp
� 2�

N
i

I

C
dxa

I

`
dyb � abc@c� 0(x � y)

�

(9)

where the integral in the exponent is equivalent to the Gauss linking number up to a

constant factor, because� 0(x � y) = 1 =jx � yj. Although this idea was developed in

a speci�c dimension, this principle can be extended to higher dimensions [63]. InD

dimensions, center vortices areD � 2 hypersurfaces.

Outline of the Dissertation

The division of present work is so that, in the �rst chapter, a more concrete physical

discussion about the Wilson loop is made, and it is shown that it probes the potential

between static quarks [32]. Then, a few remarks are made about how one can get an area

law from Wilson Loop averages in the strong coupling limit. After that, it is discussed that

center symmetry is the one that is broken in the decon�ned phase of a gauge theory [37].

Then, some lattice QCD results are presented to evidence that center vortices are indeed

relevant when considering con�nement properties [63]. The maximal center gauge and

the center projection procedure, used to detect center vortices in lattice simulations, are

brie�y discussed and some numerical results are shown.

In chapter 2, the con�ning force and center vortex properties are further analyzed.

First, the main results regarding the representation dependence of the string tension are

outlined [37]. Later, it is argued that center vortices can be accounted for in QCD vacuum
3 The fact that center vortices are localized in closed surfaces is originated from the fact that the �eld

con�gurations must obey the Bianchi identity � ���� @� F�� = 0 , unless there are monopoles which
change the direction of the chromomagnetic �ux.
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if one considers an e�ective action that has tension and sti�ness terms [28], and that a

picture of con�nement/decon�nement phases can be made in terms of the percolation

transition of such objects. Then, Vortices are found to interact by the analysis of their

correlations [25]. Closing the chapter, the branching property of these magnetic degrees of

freedom is described [27].

In chapter 3, we review the steps of ref. [58] to obtain a frustratedXY model from

an ensemble of closed line-like objects that have some of the properties outlined for center

vortices. That is done by using a path integral identities and polymer techniques.With

that they obtain a complex �eld theory with U(1) symmetry breaking.

Analyzing the soft modes of this theory and putting the model on a lattice, they

derive a frustratedXY -model. The frustration is localized in those links that pierce the

Wilson loop minimal area. Averages of this con�nement order parameter are translated

into the ratio between the partition function of the frustrated model and its unfrustrated

counterpart. Afterwards, the continuum limit and its relation with the critical coupling

are discussed. Later, the Wilson loop behavior is obtained in the small and near-critical

coupling regimes. They also derive a representation dependence of the string tension. After

that, the solid angle picture is introduced and it is explained how its multivaluedness is

exploited to capture the essential features of the near-critical region of theXY model,

and how it �dilutes� the frustration.

In chapter 4 the Monte Carlo techniques used are outlined. Starting with the

traditional Metropolis algorithm, that enables one to perform thermal averages with

Bolzmann distribution. Then, a de�nition of equilibrium is presented in terms of a

relaxation time and the problem of critical slowing down is brie�y discussed. Following

that, a method to obtain the critical coupling, the Fourth Order Cumulant Method, is

described succintly. Then the Overlap Method. used to estimate the partition function

ratios (henceforth interchangeably called �Wilson loop�) is shown. The main source to

this chapter is ref. [11].

The chapter 5 shows the numerical results obtained. One starts with a preliminary

analysis of the relaxation time and of the similarity between the frustrated and the

unfrustrated XY models near the critical temperature. Then one proceeds with the Wilson

loop computations in the �concentrated� frustration picture, also starting with a relaxation

time analysis. Then the area law and its temperature behavior are analyzed. Afterwards the

representation dependence of the string tension derived in chapter two is put to scrutiny.

Then, the solid angle picture simulations are outlined. Then some remarks are made about

the issues present in the simulations. After that, the concluding chapter adds a few more

remarks about the work and the main text ends.

There are three appendices to the present dissertation. Appendix A, based on

ref. [32], arises because of the importance of lattice QCD to the current knowledge about
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con�nement and, in particular, about Center Vortices. There, the most famous lattice

action, the Wilson one, is described. Then, the Euclidean correlators, that are of utmost

importance to lattice QCD studies are described. After that, the invariant integral measure

in SU(3) is de�ned in a not-so-mathematically rigorous manner, followed by some examples.

Appendix B gives a brief account about the two main (pseudo)random number

generators used in the present work. Namely, the Linear Congruential Generator, a well

distributed, but short period generator, and the Mersenne Twister that has been widely

used because of its ultra-astronomical period and its good �pseudo-randomness�. But

that comes by the cost of a cumbersome implementation, and a even more intricate

motivation [53]. The main sources to this Appendix are refs. [45,46].

Finally, in Appendix C, the precise meaning of the solid angle subtended by a

square is outlined, following closely the lines of ref. [52]. First, the observer-centered solid

angle is obtained, then the general case is derived by using re�exion properties and the

problem is divided in four classes of points, depending on the localization of such point

relative to the square.
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1 Wilson loops, center vortices and con�ne-

ment

In this chapter, the physical content of the Wilson loop and of center vortices are

put under scrutiny. For the former, some arguments regarding its physical interpretation

as a probe to the massive quark potential will be shown, as well as the appearance of an

area law in the strong coupling limit. On the other hand, the relation of center symmetry

breaking to the decon�nement phase transition and some lattice QCD results show the

importance of the latter. Afterwards, a contemporary picture of pure gauge QCD vacuum

is shown.

1.1 The Wilson loop and its physical interpretation

As it was previously stated, there is an order parameter that probes the con�nement

status of QCD. However, gauge invariance prohibits the existence of something akin to

a magnetization, i.e. a simple sum of the degrees of freedom, given that averages of

non-gauge-invariant local quantities are necessarily zero [24].

A solution to this problem is the introduction of the Wilson loop [70] de�ned

in (2) in the introduction for the continuum. This is gauge invariant because group

holonomies (the Wilson loop before taking the trace) in a lineC from x to y transform as

G(x; y) 7! G0(x; y) = 
( x)G(x; y)
 y(y), by the continuum gauge transformations(A.6).

So, if x and y coincide and one takes the trace, the resulting quantity is gauge invariant.

One way to grasp the physical signi�cance of this quantity and to see how it probes

con�nement is to refer to again to the Lattice QCD formalism, outlined in Appendix A.

In this context, it becomes

W(C) = tr P
Y

x;� 2C

U� (x): (1.1)

whereU� (x) denotes a link variable from sitex to x + �̂ . To assist interpretation, it is

necessary to take a standard form to the spacetime curveC. It is built by four parts, two

of them are called Wilson lines,S(m; n; 0) and S(m; n; nt ), and the other two are called

the temporal transportersT(n; nt ) e T(m; nt ).

The Wilson line S(m; n; nt ) goes fromm to n at �xed time nt along some curve.

Then the �rst temporal transporter takes from time nt to 0, at a �xed space point n. Now

the second Wilson line goes fromn back to m with a �xed time 0. Finally the second

transporter T(m; nt ) brings to the initial spacetime point (m; nt ) in a �xed space point
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m. In short,

(m; nt ) 7�! (n; nt ) 7�! (n; 0) 7�! (m; 0) 7�! (m; nt ): (1.2)

Hence, the Wilson loop is the trace of the product of the link variables that join

the abovementioned points, which is similar to(1.1) but the arbitrarity is found only in

the Wilson lines, namely,

W(C) = tr [S(m; n; nt )Ty(n; nt )Sy(m; n; 0)T(m; nt )]; (1.3)

sometimes, as in the next paragraphs, one may choose the Wilson lines to be straight,

such that C is planar.

Another prescription before the physical interpretation itself is discussed, is to

take the temporal gaugeA0(x) = 0 1. In such case, the temporal transporters are trivial,

U0(x) = 1. Thence

hW(C)i = htr [S(m; n; nt )Sy(m; n; 0)]i : (1.4)

One then sees that the Wilson loop average reduces to the correlation function between

S(m; n; nt ) and Sy(m; n; 0). Then,

lim
t !1

hW(C)i = lim
t !1

hSab(m; n; nt )S
y
ba(m; n; 0)i =

X

q
h0jSab(m; n)jqihqjSy

ba(m; n)j0i e� Eq t :

(1.5)

where it was used the result(A.34) for correlators in very large Euclidean timet. Another

important and highly non-trivial result is that S(m; n) is the quark propagator in the large

mass limit [32]. Thus the sum in(1.5) is over the states that describe quark-antiquark

pairs, both very massive and located inm and n. In such a way, the lowest energy terms

which are dominant in large euclidean times give us information about the energy of

this pair, this energy can then be identi�ed with the interquark potential V(r ). On that

account,

hW(C)i � e� n t aV (r ) : (1.6)

There are still other ways to look at the Wilson loop. Namely, it is a probe to

vacuum �uctuations, when it is placed in a space-only plane [37], one might also observe

from (2) that the Wilson loop reduces to the Aharonov-Bohm phase when one considers

the usual electromagnetism. In such context, it is possible to introduce center vortices

as singular gauge transformations from theA � = 0 con�guration [36]. In ref. [69] the

author gives a di�erential geometry approach to the Wilson loop as being the operator

1 It is important to emphasize that the Wilson loop is a gauge invariant, thus the gauge �xing serves
merely as computational tool.
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that implements the change in the color vector as one travels in closed loops in a manifold

that has the gauge �eldA � as its connection.

This quantity will also of utmost importance in the present work, as it will become

clear in chapter 3, where the e�ective model will be presented. This is highly motivated

by the de�nition of center vortices in eq. (6).

1.2 The Strong Coupling Limit and the Area Law

One way to show the existence of the linear term in the interquark potential,

as antecipated in(1), and the Area-law is to take the strong coupling limitg ! 1 ou

� = 6=g2 ! 0. In such context, making use of the Wilson action(A.22), originally proposed

in ref. [70], the average of Wilson loop,

hW(C)i =
1
Z

Z
[DU] exp

"

�
�
3

X

�

Re tr(1 � U �� )

#

tr

"
Y

n2C

U� (n)

#

; (1.7)

can be expanded in� . For the purposes of the present text,(1.7) will be truncated in the

�rst non vanishing term. In this equation, U� (n) denotes a link variable,U �� a plaquette

and [DU] the group-invariant measure. Thus, ignoring a constant term in the exponential

above,

hW(C)i =
1
~Z

Z
[DU] exp

"
�
6

X

��
tr (U �� + Uy

�� )

#

tr

"
Y

n2C

U(n)

#

=
1
~Z

Z
[DU] tr

"
Y

n2C

U(n)

# 1X

j;k =0

 
�
6

! k 1
j !k!

 
X

��
tr U ��

! j  
X

��
tr Uy

��

! k

:

(1.8)

Where it was also used that Re tr(U �� ) = 1 =2 tr (U �� + Uy
�� ). The exponential and the

sum of traces were both expanded. As for the partition function~Z , the �rst nonzero term

is, using the fact that the group measure is normalized,

~Z =
Z

[DU] 1 + O(� 2) � 1: (1.9)

For the numerator, it is necessary to refer to the results shown in appendix A.

From (A.56), one sees that the �rst term in the expansion(1.8),
R
[DU]tr [

Q
n2C U(n)],

vanishes. Hence from(A.58), one may see that the nonzero term with the smallest number

of products of link variables must contain pairedU(n) and Uy(n). At this point it is

important to stress that taking the hermitian conjugate of a plaquette amounts to change

its orientation, as one can see from (A.21). From (A.58) it follows that
Z

dU tr [V U] tr [UyW] =
1
3

tr [V W] (1.10)

thus it is possible to deduce that, when integrating over a link variable that is common to

two adjacent plaquettes, what is left over is a trace over the loop obtained by joining the

plaquettes. This procedure is pictorially summarized in �g. 3.
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1
3

Figure 3 � The group integrals from appendix A.3 imply that the integral of products of
traces over adjacent plaquettes reduces to the trace over the loop formed by
the union of these plaquettes. Adapted from ref. [32].

For the sake of simplicity, let us take the Wilson loop to be a rectangle withnt

links in temporal direction and nr links in a particular space direction. Along these lines,

one can conclude that the lowest order contribution in� will come from a term such that

the plaquettes ��t in� to form the Wilson loop, but with the orientation reversed (the

internal links vanish with the group integral). This can be seen in �g. 4.

Figure 4 � Pictorial representation of the �rst non-vanishing term contributing to the
strong coupling expansion. In blue, the plaquettes, in black the Wilson loop.
Adapted from ref. [37].

In this casenr nt plaquettes are needed, and as only those terms withUy
�� in (1.8)

contribute, the Wilson loop average reduces to

hW(C)i �
Z

[DU]
1

(nr nt )!

 
�
6

! n r n t

tr

"
Y

n2C

U(n)

#  
X

��
tr Uy

��

! n r n t

+ O(� ) (1.11)

and then, expanding the sum over plaquettes and leaving only those that ��t in� the

inverse-oriented Wilson loop (there are(nr nt )! such terms),

hW(C)i �

 
�
6

! n r n t Z
[DU] tr

"
Y

n2C

U(n)

#
Y

�� �S (W )

tr Uy
�� ; (1.12)
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whereS(W) is the minimal surface whose boundary isC. Hence,

hW(C)i � tr [1]

 
�
6

! n r n t � 1
3

� n r n t

= 3 exp

 

nr nt ln

 
�
18

!!

: (1.13)

Now, it is worth noting that A(S(W)) = nr nta2, thus characterizing the Area Law.

Furthermore, comparing (1.13) with (1.6),

e� n t aV (r ) = 3 exp

 
r
a

nt ln

 
�
18

!!

) V(r ) = �r; (1.14)

with

� = �
1
a2

ln

 
�
18

!

(1.15)

Where in (1.14) it was used that r = nr a. As expected, this is not the �nal word, it is

possible to calculate the expansion further and �nd higher order corrections to the string

tension � [16], but these are not in the scope of the present work. In any case, terms such

as (A.59) start to contribute as well.

1.3 The Center Symmetry

As it was already mentioned, the term con�nement can be viewed as a way to

describe a phase of a gauge theory. In statistical physics models, phases are in general

characterized by the existence of some order parameter and the breaking of some symmetry,

as it happens in a Ising magnet below Curie temperature, where the spin sign inversion

symmetry of the interaction is spontaneously broken by a �nite magnetization. To specify

the symmetry in the present case, �rst one might consider again the lattice Wilson action

for lattice QCD

SC [U] =
2
g2

X

n;�<�
Re tr (1 � U �� ) ; (1.16)

that has the following symmetry

U0(x; t0) 7! CU0(x; t0) 8x, t0 �xed and C 2 Z(N ); (1.17)

because the temporal plaquettes, the only one that would possibly be a�ected, are invariant,

namely,

U0
� 0 = U� (n)CU0(n+ �̂ )U� � (n+ �̂ + 0̂)U� 0(n+ 0̂)Cy = U� (n)U0(n+ �̂ )Uy

� (n+ 0̂)Uy
0(n) = U � 0:

(1.18)

The symmetry (1.17) is broken either spontaneously at high temperatures [37],

or explictly by the addition of matter. In both cases, the static quark potential isnot

asymptotically linear. The �rst case is probed with a Polyakov loop, a Wilson loop

that winds around the periodical euclidean time. Its physical interpretation is that it is
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proportional to e� �F q , where� is the inverse temperature andFq is the free energy of a

isolated quark.

Thus, an in�nite quark free energy, i.e. con�nement, is a necessary and su�cient

condition to have a vanishing Polyakov loop average. This quantity isnot invariant under

(1.17), so that a vanishing value of its average indicates that the underlying symmetry is

unbroken. Hence one identi�es the unbroken center symmetry phase with the con�ned

phase and the broken one with the decon�ned phase. In this sense, the Polyakov loop is an

order parameter for con�nement at �nite temperatures. Numerical evidence that support

these claims can be found in refs. [31,33].

In the case with dynamical matter �elds, the Center Symmetry is broken by the

matter-gauge coupling, depending on the group representation used. To see this, a few

remarks about representation theory are needed. As it can be seen in(5), the center of

SU(N ) is a discrete group, thus there is a �nite number of representations to it. ToZ(N ),

there are exactly N of them. Thus, eachSU(N ) representations can be separated in subsets

that are labeled by a center element, the name of this label is the so-calledN-ality 2. If a

representation� has N-ality 0 � k � N � 1, then � (zM ) = zk � (M ).

Thus if a matter term, for instance� yU� � + c:c:, for a scalar �eld � , is added to

the pure gauge lattice lagrangian, and the N-ality of this representation is non-zero, then

the Center Symmetry is broken. Otherwise, as in the case of gluons, which are in adjoint

representation, which has zero N-ality, it is not.

If the matter �elds are to screen the static quarks, produce colorless states and

break the string, these must be in a representation such that the tensor product between

the two representations produces a color singlet. This information is contained in the

N-ality: k = 0 �elds can not alter the N-ality of the source, so gluons can not screen

sources that havek 6= 0, whereas fundamental quarks, that havek = 1 can always do do

so. Then, the matter �elds which are expected to break the string also break the Center

Symmetry.

1.4 The Maximal Center Gauge, Center Projection and the contri-

bution of Center Vortices to the con�ning force

Due to their e�ect in a gauge invariant quantity (6), the center vortex content must

also be gauge invariant. Nonetheless, the only gauge where there seems to be a well de�ned

continuum limit to vortex properties is the Maximal Center Gauge [63]. The procedure

that de�nes the �xing of this gauge involves bringing all link variables as close as possible

2 More information about the N-ality will be given in section 2.1
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to center elements. This is done by �rst maximizing the functional

M [U] =
X

x ;�
jtr U� (x)j2: (1.19)

In the case where theU� 2 SU(2), as the link variables can be parametrized asU� =

� 01 + i� � � , where� i are the Pauli matrices and� 2
0 + � 2 = 1. As tr � i = 0, maximizing

each term of (1.19) is equivalent to maximizing� 2
0.

Afterwards the center projection is done, in this procedure, each link variable is

substituted by the closest corresponding center element. The only non-trivial con�gurations

that remain are Center Vortices (in purple in �g. 5). Thus taking a con�guration such

that there are surfaces with non-trivial link variables, the only non-trivial contribution

to Wilson loop averages come if the loop and the former surfaces link each other. The

boundary of these surfaces is where one localizes center vortices [63].

Figure 5 � Non-trivial link con�guration after center projection (in purple) and the center
vortex con�guration associated with it. In black, a Wilson loop that links with
the vortex, giving a non-trivial contribution. Taken from ref. [63].

Lattice computations like in ref. [47] give evidence that center vortices are indeed

the con�gurations responsible for the con�nement phenomenon in QCD vacuum. The

way one may imply this is to contemplate the e�ect of withdrawing the vortex contri-

bution to the interquark potential. This is done by multiplying each link variable by its

(hermitian-conjugated) center-projected �component�. Speci�cally,U� (x) 7! U� (x)Cy
� (x).

This prescription implements the contribuition of a opposite-oriented vortex above the

previous one, anihilating its contribution to Wilson loop averages. In �g. 6 one may see a

result of this procedure for two gauge groups.

So, in the complete theory, at small distances the potential is mostly the Coulomb

one, and at bigger distances, pratically linear. With center-projected lattices, the potential

rises linearly. In the case ofSU(2), the line slope is almost completely recovered by center

projection, a property that is calledcenter dominance. With vortex removal, the potential

saturates in a constant and con�nement properties are thus lost.
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Figure 6 � To the left (right): interquark potential versus their separation in a SU(2)(SU(3))
Yang-Mills theory, the full potential is in black, the center-projected potential
is in green (purple) and the center-excluded potential is in red (light blue).
Taken from ref. [47].

One also perceives that forSU(3) the linear part slope is not at all completely

recovered. This indicates that other con�gurations might contribute to the full potential.

Thus, the aforementioned monopoles may play this role. If this is to be true, a joint picture

of con�nement is needed. In fact, one may see evidence [4] that in fact monopoles become

�glued� to center vortices worldlines, as pictorially represented in �g. 7. More recently [59],

there have been e�orts to de�ne gauges in the continuum that detect such topological

defects in gauge �eld con�gurations.

Although this picture will not be used in the e�ective model to be discussed, it is

an important contemporary vision of pure gauge QCD vacuum, and it might even motivate

future developments of the e�ective models.

Figure 7 � Monopole-antimonopole �ux colimation in center vortices' worldlines. Taken
from ref. [4].
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2 Further properties of the con�ning force

and of Center Vortices

Besides the properties mentioned in the previous chapter, there are many other

aspects of the con�ning force that can be deduced from LQCD simulations and/or

holography studies. The results presented in this chapter form the basis for the e�ective

model that will be developed in the next chapter. Moreover, the ones in section 2.1 will

be used as a consistency check for the e�ective model, as not all the properties described

here will be taken into account there.

2.1 Representation dependence of the String Tension

One important point to adress is how the string tension behaves as one changes the

representation of the gauge group. Results in this direction state that� R / � F , whereR

denotes a arbitrary representation of the gauge group andF its fundamental representation.

The �rst kind of these studies [5] reveal that, at weak couplings andD = 2, where analytic

Wilson loop calculations are more feasible, the inclination of the interquark potential at

intermediate distances obeys

� R =
CR

CF
� F (2.1)

whereCr is the quadratic Casimir of the representationr = R; F , that is de�ned by

X

a
R(Ta)R(Ta) = CR1; (2.2)

whereR(Ta) is the a-th Lie algebra generator in representationR [41]. Thus eq.(2.1) is

called Casimir scaling. For SU(2), Cr = j (j + 1) , which correspond to the eigenvalues of

total angular momentum squared in units of~2.

It is possible to argue that the above mentionedD = 2 calculation somehow re�ects

the D = 4 case through adimensional reduction[5], the idea that somehow the calculations

in the former dimension yield calculations the latter. That holds true for the leading term

of strong coupling expansion, and might also surprisingly work for weak couplings [35,57].

There is indeed compeling lattice QCD evidence that this is true from ref. [8], whose main

result is displayed in �g. 8 for SU(3) in D = 4.

For larger separations, it is energetically favorable for gluons to screen the static

charges and form two separated bound states formed by one static quark and the gluons.

This is somewhat similar to the mechanism discussed in the previous chapter, now not only

this mechanism is enabled by gluons instead of dynamical quarks (as only the e�ects of
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Figure 8 � Lattice QCD evidence for Casimir Scaling forSU(3). Each continuous line
for higher representations is obtained from the �t of the fundamental one by
multiplying the quadratic Casimir factor. Taken from ref. [8].

the former are considered), but also the string might not break. This is because gluons are

in the adjoint representation, and they might form states that are not colorless depending

on the representation of the static source.

One might also ask how this residual string tension (calledk-string) depends on

the representations of the gauge group. In this context, two main results arise, the �rst

one is calledCasimir Law and it reads [20,21]

� R = � N (kR) =
kR(N � kR)

N � 1
� F (2.3)

which stems from the fact that the factor that multiplies � F can be shown to be quadratic

Casimir of the anti-symmetric representation withN-ality kR normalized by the Casimir

of the fundamental representation. Another possibility for the representation dependence
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stems from supersymmetry studies [23,42] suggest that

� R = � N (kR) =
sin

�
�k
N

�

sin
�

�
N

� � F (2.4)

which is called aSine Law.

In both of the previous equationskR is the N-ality of representationR, that is also

the number of squares in a Young Tableau of the representation modN . For instance, when

and r = F , kF = 1 mod N = 1; if r = A (adjoint representation), kA = N mod N = 0.

This quantity remains unaltered when one takes tensor products of some representation

by the adjoint, so gluons in the latter representaion can not break strings with a nonzero

N-ality, as stated earlier. It is also worth noticing that for N >> 1, both string tension

dependences yield� (kR) � k� F , hence it is increasingly di�cult to distinguish between

the two laws.

It can be readily seen that� A = 0, thus implying in another string breaking

mechanism when one has gluons and static quarks in the adjoint representation. The �nal

state after the �k-string breaking� is called agluelump. Numerical evidence to this string

breaking can be found in ref. [19].

Figure 9 � Lattice QCD evidence for k-string breaking with gluons. Taken from ref. [19]
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2.2 Tension, Sti�ness and Percolation of Center Vortices

Inspired by the Center Dominance property, one is naturally lead to think, formally,

that one can grasp all the con�nement information in Yang-Mills vacuum if one takes

averages of observables such as the Wilson loop, with a e�ective model where all the

SU(N )=Z(N ) degrees of freedom are integrated out. With this in mind, and endowed with

a continuum analogue of the maximal center gauge, the authors of ref. [28] performed

a gradient expansion of the Yang-Mills action and arrived at a e�ective model inD

dimensions, which reads

S =
Z

@�
d2�

p
g (� + c K A

ai K
A
bj g

abgij ) (2.5)

g = det gab; gab = @ax � @bx � : (2.6)

wheregab and K A
ij denote respectively metric and the extrinsic curvature of the center

vortex hyper-surface@� . The equation above can be related to the leading and sub-leading

Nambu-Goto action in D dimensions.

In further studies, a lattice version of (2.5) is analyzed forSU(2) [29, 30] and

SU(3) [27, 62], andD = 4, where vortices are 2-surfaces. In the latter case the center

consists of the setZ (3) = f 1; e� i 2�
3 g, and the elementary variables to this discussion are

the plaquettesU �� , but as far as the center projection procedure is concerned, these can

be completely determined by thetriality k�� 2 f 0; � 1g, so that U �� = ei 2�
3 k�� . Hence

non-zerok�� means that the plaquette in question belongs to the the center vortex world

surface. Then,

S = �
X

x

X

�;�
�<�

jk�� (x)j + c
X

x;�

0

B
B
@

X

�<�
� 6= �;� 6= �

jk�� (x)k�� (x)j + jk�� (x)k�� (x � �̂ )j

+ jk�� (x � �̂ )k�� (x)j + jk�� (x � �̂ )k�� (x � �̂ )j

!

:

(2.7)

One can see that a� penalty arises whenever the non-zerok�� are located at a surface

area, and that ac penalty arises whenever plaquettes which share the same link, but are

in di�erent planes have non-zerok�� .

Taking Wilson loop averages, which is de�ned by counting how many vortices

pierce its minimal area, one can perform a survey in the coupling constant space and �nd

that there is a con�ned (nonzero string tension) and a decon�ned (zero string tension)

phase as seen in �g. 10.

They extracted the physical meaning from the coupling constants� and c by

requiring that they reproduce the ratioTc=
p

� 0 � 0:63 , whereTc is the critical temperature

for the decon�nement transition and � 0 is the string tension at zero temperature1. This
1 Zero temperature simulations are those in which all four euclidean coordinates have equal and big
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