• português (Brasil)
    • English
    • español
  • English 
    • Português (Brasil)
    • English
    • Español
  • Login
          AJUDA
Pesquisa
avançada
     
View Item 
  •   RIUFF
  • TEDE - Migração
  • TEDE sem arquivo
  • View Item
  •   RIUFF
  • TEDE - Migração
  • TEDE sem arquivo
  • View Item
JavaScript está desabilitado no seu navegador. Algumas funcionalidades deste site podem não funcionar.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorsTitlesSubjectsDepartmentProgramTypeType of AccessThis CollectionBy Issue DateAuthorsAdvisorsTitlesSubjectsDepartmentProgramTypeType of Access

Statistics

View Usage Statistics

Collections
  • TEDE sem arquivo

Statistics
Metadata
Show full item record
REDES NEURAIS ATRATORAS EM TOPOLOGIAS COMPLEXAS
Abstract
In this work we present some modifications in the Hopfield model for attractor neural networks. First, in order to bring the model closer to a biological network of neurons, we introduce a controlled dilution generating complex topologies. This modification is supported by experimental evidences [1, 2]. Then, study the relation between eficiency and the topologies, in the recovery stored patterns. We study how the network topology play a role in the model, by introducing correlated patterns and studing the performance of each topology as the correlation between patterns is increased.
[Texto sem Formatação]
Document type
Dissertação
Format
application/pdf
Subject(s)
Rede neural
Topologia
Neurociências
Mecânica estatística
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
 
URI
https://app.uff.br/riuff/handle/1/18934
License Term
CC-BY-SA
DSpace
DSpace
DSpace
DSpace
DSpace
DSpace

  Contact Us

 Fale com um bibliotecário

DSpace  Siga-nos no Instagram