Aviso de cookies

Neste site utilizamos cookies analíticos. Os cookies analíticos são utilizados para compreender como os visitantes interagem com o site. Eles ajudam a fornecer informações sobre métricas como número de visitantes, taxa de rejeição, origem do tráfego, etc.

  • Portal do Governo Brasileiro
    • português (Brasil)
    • English
    • español
  • English 
    • Português (Brasil)
    • English
    • Español
  • Login
          AJUDA
Pesquisa
avançada
     
View Item 
  •   RIUFF
  • TEDE - Migração
  • TEDE sem arquivo
  • View Item
  •   RIUFF
  • TEDE - Migração
  • TEDE sem arquivo
  • View Item
JavaScript está desabilitado no seu navegador. Algumas funcionalidades deste site podem não funcionar.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorsTitlesSubjectsDepartmentProgramTypeType of AccessThis CollectionBy Issue DateAuthorsAdvisorsTitlesSubjectsDepartmentProgramTypeType of Access

Statistics

View Usage Statistics

Collections
  • TEDE sem arquivo

Statistics
Metadata
Show full item record
TEORIAS CONFORMES E EVOLUÇÃO DE SCHRAMM-LOEWNER ESTOCÁSTICA
Abstract
The nature of a phase transition depends dramatically on the system s dimensionality and symmetries. In particular, the continuum phase transitions in two-dimensional systems possess an infinite dimensional symmetry group called the conformal group. Important quantities from the physical point of view, such as critical exponents and correlation functions, may be calculated using conformal symmetry. Recently, a new description of the geometrical properties of two-dimensional critical systems has been proposed without an underlying lattice realization, the so-called Stochastic Schramm-Loewner Evolution (SLE). This new formulation has attracted the attention of many physicists and mathematicians and has been awarded a Fields medal in 2006, given to W. Werner. The purpose of this dissertation is to present the fundamentals of conformal field theory from the algebraic point of view as well as from the SLE one. We illustrate these methods through their application in the most important model in statistical physics: the Ising model.
[Texto sem Formatação]
Document type
Dissertação
Format
application/pdf
Subject(s)
Teoria de Schramm-Loewner Estocástica
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
 
URI
https://app.uff.br/riuff/handle/1/19178
License Term
CC-BY-SA
DSpace
DSpace
DSpace
DSpace
DSpace
DSpace

  Contact Us

 Fale com um bibliotecário

DSpace  Siga-nos no Instagram