Aviso de cookies

Neste site utilizamos cookies analíticos. Os cookies analíticos são utilizados para compreender como os visitantes interagem com o site. Eles ajudam a fornecer informações sobre métricas como número de visitantes, taxa de rejeição, origem do tráfego, etc.

  • Portal do Governo Brasileiro
    • português (Brasil)
    • English
    • español
  • English 
    • Português (Brasil)
    • English
    • Español
  • Login
          AJUDA
Pesquisa
avançada
     
View Item 
  •   RIUFF
  • Produção Científica
  • Instituto de Matemática e Estatística - IME
  • GGV - Curso de Graduação em Estatística - Bacharelado - Niterói
  • GGV - Trabalhos de Conclusão de Curso - Niterói
  • View Item
  •   RIUFF
  • Produção Científica
  • Instituto de Matemática e Estatística - IME
  • GGV - Curso de Graduação em Estatística - Bacharelado - Niterói
  • GGV - Trabalhos de Conclusão de Curso - Niterói
  • View Item
JavaScript está desabilitado no seu navegador. Algumas funcionalidades deste site podem não funcionar.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorsTitlesSubjectsDepartmentProgramTypeType of AccessThis CollectionBy Issue DateAuthorsAdvisorsTitlesSubjectsDepartmentProgramTypeType of Access

Statistics

View Usage Statistics
application/pdf

View/Open
tcc_20211_MarlonViniciusAlvesD... (1.556Mb)

Collections
  • GGV - Trabalhos de Conclusão de Curso - Niterói

Statistics
Metadata
Show full item record
MÉTODOS DE CLUSTERING EM APRENDIZADO DE MÁQUINAS NÃO SUPERVISIONADO
ARAÚJO, MARLON VINÍCIUS ALVES DE | Posted on: 2021
Abstract
Atualmente, conforme a tecnologia avança, a quantidade de dados cresce exponencialmente, com milhões de terabytes de dados sendo gerados diariamente. Para obter informações a partir de um conjunto de dados, métodos de machine learning, ou aprendizado de máquinas, são utilizados para análises, previsões, resolução de problemas, de acordo com o que se busca extrair, automatizando o desenvolvimento de modelos analíticos. Porém, por mais que seja “fácil” o acesso há diversas bases de dados, em alguns casos, as bases não conterão todas as informações almejadas, como dados rotulados, ou categorizados. Isso acontece porque coletar dados anotados pode ser extremamente caro, custar muito tempo, e em certas situações, até mesmo impossível. Para lidar com essa ausência de informações desejadas, são utilizadas técnicas de aprendizado de máquinas não supervisionado, que auxiliam na detecção de padrões e percepções ocultas nos dados analisados. Entre diversos métodos, um dos mais importantes dentro de aprendizagem não supervisionada é o clustering, ou agrupamento, em que seus algoritmos processarão os dados, permitindo encontrar clusters (grupos) caso existam, de forma que os elementos dentro do mesmo cluster sejam o mais semelhante possível, e tenham menos ou nenhuma semelhança com os elementos de outro grupo. O objetivo deste trabalho é estudar e aplicar algoritmos de clustering em um conjunto de dados não rotulado, utilizando suas respectivas ferramentas na linguagem de programação R, verificando se os algoritmos são capazes de fornecer resultados eficientes e confiáveis.
[Texto sem Formatação]
Document type
Trabalho de conclusão de curso
Source
ARAÚJO, Marlon Vinícius Alves de. Métodos de Clustering em Aprendizado de Máquinas Não Supervisionado. 2021. 89 f. Trabalho de Conclusão de Curso (Graduação de Estatística) - Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2021.
Subject(s)
Clustering
Cluster
Método k-means
Método complete linkage
Aprendizado de máquina
Análise de agrupamento
 
URI
http://app.uff.br/riuff/handle/1/26201
License Term
CC-BY-SA
DSpace
DSpace
DSpace
DSpace
DSpace
DSpace

  Contact Us

 Fale com um bibliotecário

DSpace  Siga-nos no Instagram