Aviso de cookies

Neste site utilizamos cookies analíticos. Os cookies analíticos são utilizados para compreender como os visitantes interagem com o site. Eles ajudam a fornecer informações sobre métricas como número de visitantes, taxa de rejeição, origem do tráfego, etc.

  • Portal do Governo Brasileiro
    • português (Brasil)
    • English
    • español
  • English 
    • Português (Brasil)
    • English
    • Español
  • Login
          AJUDA
Pesquisa
avançada
     
View Item 
  •   RIUFF
  • Produção Científica
  • Instituto de Matemática e Estatística - IME
  • GGV - Curso de Graduação em Estatística - Bacharelado - Niterói
  • GGV - Trabalhos de Conclusão de Curso - Niterói
  • View Item
  •   RIUFF
  • Produção Científica
  • Instituto de Matemática e Estatística - IME
  • GGV - Curso de Graduação em Estatística - Bacharelado - Niterói
  • GGV - Trabalhos de Conclusão de Curso - Niterói
  • View Item
JavaScript está desabilitado no seu navegador. Algumas funcionalidades deste site podem não funcionar.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorsTitlesSubjectsDepartmentProgramTypeType of AccessThis CollectionBy Issue DateAuthorsAdvisorsTitlesSubjectsDepartmentProgramTypeType of Access

Statistics

View Usage Statistics
application/pdf

View/Open
tcc_20221_GabrielAlvesMiranda_... (1.050Mb)

Collections
  • GGV - Trabalhos de Conclusão de Curso - Niterói

Statistics
Metadata
Show full item record
DETECÇÃO DE BOTS NO TWITTER ATRAVÉS DE TÉCNICAS DE PROCESSAMENTO DE LINGUAGEM NATURAL
Miranda, Gabriel Alves
Abstract
Bot é definido como um programa capaz de performar atividades de forma automática ou com mínima intervenção humana. Nas redes sociais, o uso dos bots como mecanismo para disseminação de fakenews tem se mostrado um fenômeno recorrente na atualidade, por exemplo, no campo da disputa política. Desse modo, buscar ferramentas para identificar esses programas se mostra de extrema importância. Nesta monografia apresentamos um algoritmo que buscar identificar esses bots em redes sociais, através da análise textual das postagens dos usuários. A Análise Textual nesse contexto visa identificar aspectos como a morfologia e semântica do texto analisado e categorizá-lo. Os métodos serão aplicados nas bases de dados extraídas da rede social Twitter, e que serão analisadas em conjunto com o programa PEGABOT do Instituto de Tecnologia e Sociedade do Rio de Janeiro (ITS Rio) e do Instituto Tecnologia & Equidade. Foram testados três conjuntos de variáveis pelo método Naive Bayes e o modelo de classificação com as melhores métricas foi o que não utilizou como variável os tokens publicados, atingindo acurácia de 77%, sensibilidade de 80% e especificidade de 63%.
[Texto sem Formatação]
Document type
Trabalho de conclusão de curso
Source
MIRANDA, Gabriel Alves. Detecção de bots no twitter através de técnicas de processamento de linguagem natural. 2022. 48 f. Trabalho de Conclusão de Curso (Graduação em Estatística) - Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2022.
Subject(s)
Processamento de linguagem natural
Análise Textual
Análise de sentimentos
Detecção de Bot
Python
Twitter (Rede social on-line)
Processamento de linguagem natural (Computação)
 
URI
http://app.uff.br/riuff/handle/1/30475
License Term
CC-BY-SA
DSpace
DSpace
DSpace
DSpace
DSpace
DSpace

  Contact Us

 Fale com um bibliotecário

DSpace  Siga-nos no Instagram