Please use this identifier to cite or link to this item: https://app.uff.br/riuff/handle/1/8941
Title: Uso da biblioteca CUSP em CUDA para implementação do algoritmo dual scaling em dados categóricos multivariados
Authors: Silva, Rômulo Alves de Souza
metadata.dc.contributor.advisor: Mantuan, Altobelli de Brito
metadata.dc.contributor.members: Marques, Bruno Augusto Dorta
Issue Date: 2018
Publisher: Universidade Federal Fluminense
Abstract: Para atender esse cenário que vivemos em relação ao crescimento da geração de informações, a busca por ferramentas que consigam aumentar seu poder de processamento, de modo a acompanhar esse crescimento do volume de dados, é algo constante. Para atender essa necessidade, são desenvolvidas diversas técnicas de extra- ção de informações úteis de modo que a eficiência do processamento destas técnicas seja máxima. O Dual scaling tem com o objetivo gerar uma contextualização espacial através da correlação de itens de uma base de dados com a apresentação dos resultados de forma simples, intuitiva e precisa. Porém esta técnica possui um modelo matemático para a geração dos resultados altamente custoso e, atualmente, somente soluções implementadas de forma sequencial são disponibilizadas no mercado. Neste trabalho, é implementado o algoritmo de Dual scaling paralelizável através da utiliza- ção dos processadores em uma GPU com o auxílio da biblioteca Cusp para facilitar a implementação. Posteriormente são feitos testes de tempo de execução com duas implementações de forma sequencial a fim de validar a implementação proposta. Por fim, algumas ideias para trabalhos futuros são apresentadas para dar continuidade a este estudo.
metadata.dc.description.abstractother: In order to meet this scenario that we live in relation to the growth of information generation, the search for tools that can increase its processing power in order to keep pace with this growth in data volume is constant. To meet this need, various techniques for extracting useful information are developed so that the processing efficiency of these techniques is maximal. Dual scaling aims to create a spatial contextualization through the correlation of items in a database with the presentation of results in a simple, intuitive and precise way. However, this technique has a mathematical model for the generation of results that is costly and currently, only solutions implemented in a sequential way are available in the market. In this work, a parallel Dual scaling algorithm is implemented through the use of the processors of a GPU with the aid of the Cusp library to facilitate the implementation. Subsequently, run-time tests are run with two implementations in a sequential way to validate the proposed implementation. Finally, some ideas for future work are presented to continue this study.
URI: https://app.uff.br/riuff/handle/1/8941
Appears in Collections:TSC - Trabalho de Conclusão de Curso

Files in This Item:
File Description SizeFormat 
TCC_ROMULO_ALVES_DE_SOUZA_SILVA.pdf1.16 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons